Nội dung chính
Toán lớp 8 (Việt Nam)
Khóa học: Toán lớp 8 (Việt Nam) > Chương 2
Bài học 3: Phép cộng, phép trừ các phân thức đại số- Giới thiệu về phép cộng và trừ phân thức
- Cộng và trừ các phân thức có cùng mẫu
- Phép cộng và phép trừ các phân thức khác mẫu
- Phép cộng các phân thức khác mẫu
- Trừ các phân thức khác mẫu
- Phép trừ các phân thức: mẫu ở dạng nhân tử
- Phép trừ các phân thức
- Phép cộng, trừ phân thức
- Cộng và trừ phân thức (cơ bản)
- Cộng (trừ) hai phân thức cùng mẫu thức
- Cộng và trừ các phân thức: mẫu được phân tích thành nhân tử
- Cộng và trừ các phân thức
© 2023 Khan AcademyĐiều khoản sử dụngChính sách bảo mậtThông báo về cookie
Phép cộng, trừ phân thức
Bạn đã học được những điều cơ bản về cộng và trừ các phân thức chưa? Tuyệt! Hãy luyện tập thêm với các ví dụ phức tạp hơn.
Kiến thức cần nắm vững trước khi bắt đầu bài học
Một phân thức là một biểu thức có dạng A/B, trong đó A, B là những đa thức và B khác đa thức 0.
Để cộng hoặc trừ hai phân số có cùng mẫu, chúng ta cộng hoặc trừ các tử, và giữ nguyên mẫu.
Khi các mẫu không giống nhau, chúng ta cần quy đồng mẫu. Nói cách khác, chúng ta phải tìm một mẫu chung.
Nếu kiến thức này mới với bạn, bạn có thể sẽ muốn xem các bài viết sau trước khi học tiếp:
Nội dung bài học
Trong bài học này, bạn sẽ luyện tập cộng và trừ các phân thức với các mẫu khác nhau. Bạn sẽ sử dụng mẫu chung nhỏ nhất làm mẫu chung trong những ví dụ dưới đây và tìm hiểu vì sao việc đó lại hữu ích.
Bài tập khởi động: start fraction, 3, divided by, x, minus, 2, end fraction, minus, start fraction, 2, divided by, x, plus, 1, end fraction
Để trừ hai phân thức, ta cần quy đồng mẫu.
Trong ví dụ này, chúng ta có thể tìm mẫu chung bằng cách nhân phân thức thứ nhất với left parenthesis, start fraction, x, plus, 1, divided by, x, plus, 1, end fraction, right parenthesis và phân thức thứ hai với left parenthesis, start fraction, x, minus, 2, divided by, x, minus, 2, end fraction, right parenthesis.
Sau đó, chúng ta có thể trừ các tử và giữ nguyên mẫu.
Bài tập vận dụng
Mẫu chung nhỏ nhất
Phân số
Đôi khi, các mẫu của hai phân số khác nhau nhưng lại có các nhân tử chung.
Ví dụ, tính start fraction, 3, divided by, 4, end fraction, plus, start fraction, 1, divided by, 6, end fraction:
Chú ý rằng mẫu chung được sử dụng trong ví dụ này không phải là tích của hai mẫu (24). Thay vào đó, nó là bội chung nhỏ nhất của 4 và 6 (12).
Bội chung nhỏ nhất của các mẫu của hai hay nhiều hơn hai phân thức được gọi là mẫu chung nhỏ nhất.
Phân thức
Bây giờ, hãy áp dụng các lý thuyết đó để thực hiện phép cộng sau đây:
Đầu tiên, hãy tìm mẫu chung nhỏ nhất:
Vậy nên mẫu chung nhỏ nhất là start color #0c7f99, left parenthesis, x, minus, 2, right parenthesis, end color #0c7f99, start color #0d923f, left parenthesis, x, plus, 1, right parenthesis, end color #0d923f, start color #7854ab, left parenthesis, x, plus, 3, right parenthesis, end color #7854ab.
Chúng ta có thể cộng các phân thức như sau:
Vận dụng
Vì sao lại sử dụng mẫu chung nhỏ nhất?
Bạn có thể thắc mắc là vì sao sử dụng mẫu chung nhỏ nhất lại quan trọng đến vậy khi chúng ta cộng hoặc trừ các phân thức.
Sau cùng, đây không phải là một điều kiện bắt buộc, và chúng ta có thể dễ dàng sử dụng các mẫu khác với phân số.
Ví dụ, bảng bên dưới làm phép tính start fraction, 3, divided by, 4, end fraction, plus, start fraction, 1, divided by, 6, end fraction sử dụng hai mẫu chung khác nhau: một bên dùng mẫu chung nhỏ nhất (12) và một bên dùng tích của hai mẫu (24).
Mẫu chung nhỏ nhất (12) | Mẫu chung (24) |
---|---|
Chú ý rằng khi sử dụng 24 làm mẫu chung, chúng ta phải thực hiện nhiều bước hơn. Số sẽ lớn hơn và kết quả cần được rút gọn.
Điều này cũng xảy ra nếu bạn không sử dụng mẫu chung nhỏ nhất khi cộng hoặc trừ các phân thức.
Tuy nhiên, với các phân thức, quy trình này sẽ khó hơn vì cả tử và mẫu đều là đa thức thay vì số nguyên! Bạn phải tính toán các đa thức bậc cao hơn và phân tích đa thức để rút gọn phân số.
Tất cả những bước làm thêm này có thể được lược bỏ bằng cách sử dụng mẫu chung nhỏ nhất khi thực hiện cộng hoặc trừ các phân thức.
Tham gia cuộc thảo luận?
Chưa có bài đăng nào.